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Introduction
 An x-ray FEL oscillator was first proposed in 1984[1] at the same conference that first 

suggested producing intense x-rays with self-amplified spontaneous emission (SASE)

 While SASE took off, the oscillator laid dormant for more than 20 years

1

[1] R.Colella and A.Luccio. “Proposal for a free electron laser in the X-ray region” Opt. Comm. 50, 41 (1984).
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[2] K.-J. Kim, Y. Shvyd’ko, and S. Reiche. “A Proposal for an X-Ray FEL Oscillator with an Energy-Recovery Linac”, PRL 100, 244802 (2008).

Stay tuned for Yuri Shvyd’ko’s upcoming talk...
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[2] K.-J. Kim, Y. Shvyd’ko, and S. Reiche. “A Proposal for an X-Ray FEL Oscillator with an Energy-Recovery Linac”, PRL 100, 244802 (2008).

Stay tuned for Yuri Shvyd’ko’s upcoming talk...

Describes longitudinal evolution (my first work on this subject)

One of my first calculations → harmonic XFELO

Recent investigations using superconducting linacs and storage rings

Some progress + future work
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X-ray FEL oscillator schematic

 High-brightness, low (10-300 A) peak current electron beam at high (~MHz) repetition rate
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X-ray FEL oscillator schematic

 High-brightness, low (10-300 A) peak current electron beam at high (~MHz) repetition rate

 Undulator

 Low loss optical cavity
– Perfect diamond crystals that reflect x-rays via Bragg diffraction [3 thick crystals with low 

loss, (1-R) < 5%; 1 thin crystal to allow for ~5% transmission]
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X-ray FEL oscillator schematic

 High-brightness, low (10-300 A) peak current electron beam at high (~MHz) repetition rate

 Undulator

 Low loss optical cavity
– Perfect diamond crystals that reflect x-rays via Bragg diffraction [3 thick crystals with low 

loss, (1-R) < 5%; 1 thin crystal to allow for ~5% transmission]

– Focusing elements to produce x-ray waist at undulator middle and optimize Rayleigh 
range (e.g., compound refractive lens or grazing incidence ellipsoidal mirror)

– Bow-tie shape is a wrapped-up monochromator that allows for wavelength tuning [3,4]
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[3] R.M.J. Cotterill, "A universal planar x-ray resonator" Appl. Phys. Lett. 12, 403 (1968).
[4] K.-J. Kim and Y. Shvyd’ko. "Tunable optical cavity for an x-ray free-electron-laser oscillator," PRST-AB 12, 030703 (2009).



Characteristic SASE XFELO

Pulse duration 1 to 200 fs 200 to 2000 fs

Photons/pulse ~1012 ~109

Energy BW ~ 10 eV ~10-2 eV

Coherence Transverse Fully

Repetition rate Variable ~ MHz
 

Stability
1-100% depending on 

chosen BW

 

< 1%

Brightness ~1032 ~1032

XFELO is a complementary source to SASE

1. Inelastic x-ray scattering

2. Nuclear resonant scattering

3. X-ray photo-emission 
spectroscopy

4. Hard x-ray imaging

5. X-ray photon correlation 
spectroscopy

6. ???
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[5] R.R. Lindberg, K.-J. Kim, Yu. Shvyd’ko, and W.M. Fawley. “Performance of the x-ray free-electron laser oscillator with crystal cavity” PRST-AB 14, 010701 (2011).

Beam energy γmc2 7 GeV

Energy spread σγ/γ 2x10–4

Norm. emittance εn 0.2 mm*mrad

Peak current I 10 A

Undulator periods Nu 3000

Undulator length Lu 53 m

Example[5]
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Linear supermodes of the exponential growth regime

5

[6] G. Dattoli, G. Marino, A. Renieri, and F. Romanelli. “Progress in the Hamiltonian picture of the FEL”, IEEE J. Quantum Electron. 17, 1371 (1981).
[7] P. Elleaume. “Microtemporal and spectral structure of storage ring free-electron lasers”, IEEE J. Quantum Electron. 21, 1012 (1985).

From K.-J. Kim, Y. Shvyd’ko, and S. Reiche, PRL 100, 244802 (2008):

6, 7 
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Gain due to finite 
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 General solution is spanned by a sum of Gauss-Hermite modes 

Effective single 
pass gain with

Gain is reduced when electron beam duration σe 
approaches the inverse bandwidth of crystal 1/σω
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Linear supermodes of the exponential growth regime

6

[8] R.R. Lindberg and K.-J. Kim “Mode growth and competition in the x-ray free-electron laser oscillator start-up from noise,” PRST-AB 12, 070702 (2009).

We decompose the growing field using the 
Hermite basis functions[8], whose growth we 

can compare to the supermode theory:

From K.-J. Kim, Y. Shvyd’ko, and S. Reiche, PRL 100, 244802 (2008):
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Linear supermodes of the exponential growth regime

6

[8] R.R. Lindberg and K.-J. Kim “Mode growth and competition in the x-ray free-electron laser oscillator start-up from noise,” PRST-AB 12, 070702 (2009).

Initial start-up from 
noisy spontaneous 

radiation

Exponential growth 
of three lowest-order 

supermodes

Nonlinear 
saturation

We decompose the growing field using the 
Hermite basis functions[8], whose growth we 

can compare to the supermode theory:

1D “extended” code

From K.-J. Kim, Y. Shvyd’ko, and S. Reiche, PRL 100, 244802 (2008):
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Linear supermodes of the exponential growth regime

6

[8] R.R. Lindberg and K.-J. Kim “Mode growth and competition in the x-ray free-electron laser oscillator start-up from noise,” PRST-AB 12, 070702 (2009).

Initial start-up from 
noisy spontaneous 

radiation

Exponential growth 
of three lowest-order 

supermodes

Nonlinear 
saturation

We decompose the growing field using the 
Hermite basis functions[8], whose growth we 

can compare to the supermode theory:

2D GINGER code1D “extended” code

From K.-J. Kim, Y. Shvyd’ko, and S. Reiche, PRL 100, 244802 (2008):
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3D formula for the linear FEL gain

7

From K.-J. Kim, Y. Shvyd’ko, and S. Reiche, PRL 100, 244802 (2008):

[9] K.-J. Kim. “FEL gain taking into account diffraction and electron beam emittance; generalized Madey's theorem”, NIMA 318, 489 (1992).
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3D formula for the linear FEL gain

7

Gain can be written as a convolution over the initial brightness functions [9]

Input radiation brightness Undulator brightness 
(Wigner) function

Electron beam
distribution function

From K.-J. Kim, Y. Shvyd’ko, and S. Reiche, PRL 100, 244802 (2008):

[9] K.-J. Kim. “FEL gain taking into account diffraction and electron beam emittance; generalized Madey's theorem”, NIMA 318, 489 (1992).
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Gain can be written as a convolution over the initial brightness functions [9]

Input radiation brightness
Assume Gaussian field in 

position and angle

Undulator brightness 
(Wigner) function

Computed in, e.g., [10]

Electron beam
distribution function

Assume Gaussian in position, 
angle, and energy

From K.-J. Kim, Y. Shvyd’ko, and S. Reiche, PRL 100, 244802 (2008):

[9] K.-J. Kim. “FEL gain taking into account diffraction and electron beam emittance; generalized Madey's theorem”, NIMA 318, 489 (1992).
[10] K.-J. Kim, “Characteristics of synchrotron radiation,” AIP Conference Proceedings 184, 565 (1989).

9
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Harmonic XFELO for “low” energy e-beams
 For fixed e-beam parameters, the gain at a harmonic can be larger than that at the fundamental if 

the energy spread is small enough, hσγ/γ < 1/2πNu

 Hence, an XFELO is possible for with less linac and lower energy electron beams [11]

8

[11] J. Dai, H. Deng, and Z. Dai. “Proposal for an X-Ray Free Electron Laser Oscillator with Intermediate Energy Electron Beam,” PRL 108, 034802 (2012).
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the energy spread is small enough, hσγ/γ < 1/2πNu

 Hence, an XFELO is possible for with less linac and lower energy electron beams [11]

 For example, one can reach 14.4 keV photons with the 4 GeV LCLS-II beam [12]

8

[11] J. Dai, H. Deng, and Z. Dai. “Proposal for an X-Ray Free Electron Laser Oscillator with Intermediate Energy Electron Beam,” PRL 108, 034802 (2012).
[12] W. Qin, S. Huang, K. X. Liu, K.-J. Kim, R.R. Lindberg, Y. Ding, Z. Huang, T. Maxwell, K. Bane, G. Marcus. "Start-to-end simulations for an XFELO at the 

LCLS-II AND LCLS-II-HE", Proc. FEL2017, pp 247 (2017).

LCLS-II SRF linac operating @ ~MHz
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Harmonic XFELO for “low” energy e-beams
 For fixed e-beam parameters, the gain at a harmonic can be larger than that at the fundamental if 

the energy spread is small enough, hσγ/γ < 1/2πNu

 Hence, an XFELO is possible for with less linac and lower energy electron beams [11]

 For example, one can reach 14.4 keV photons with the 4 GeV LCLS-II beam [12]
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[11] J. Dai, H. Deng, and Z. Dai. “Proposal for an X-Ray Free Electron Laser Oscillator with Intermediate Energy Electron Beam,” PRL 108, 034802 (2012).
[12] W. Qin, S. Huang, K. X. Liu, K.-J. Kim, R.R. Lindberg, Y. Ding, Z. Huang, T. Maxwell, K. Bane, G. Marcus. "Start-to-end simulations for an XFELO at the 

LCLS-II AND LCLS-II-HE", Proc. FEL2017, pp 247 (2017).

LCLS-II SRF linac operating @ ~MHz

Adjust injector parameters
(e.g., laser profile) to optimize

e-beam (energy flatness, spread) 
at the XFELO
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Harmonic XFELO for “low” energy e-beams
 For fixed e-beam parameters, the gain at a harmonic can be larger than that at the fundamental if 
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Reducing energy spread requirement with 
a transverse gradient undulator

 Gain suffers when the energy spread becomes larger than the FEL bandwidth, σγ/γ > 1/3Nu

 The energy spread effect can be compensated if we both

1. Use a transverse gradient undulator (TGU) to vary the FEL resonance with position [13,14]

2. Introduce carefully matched dispersion to correlate the energy with position

9

[13] T.I. Smith, J.M.J. Madey, L.R. Elias, and D.A.G. Deacon, “Reducing sensitivity of a free electron laser to electron energy”, J. App. Phys. ‐ 50, 4580 (1979).
[14] Z. Huang, Y. Ding, and C.B. Schroeder, “Compact XFEL from a laser-plasma accelerator using a transverse-gradient undulator” PRL 109, 204801 (2012).
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Energy spread dependence 
vanishes if we choose



TGU-enabled XFELO in an “ultimate” storage ring[15]

10

Increasing γ-x correlation 
(dispersion D) reduces 

the variation in resonance 
condition due to energy 

spread, thereby 
increasing the gain 

Increasing dispersion D further 
increases e-beam size, reducing 

e-beam density, and thus the 
coupling to the field

[15] R.R. Lindberg, K.-J. Kim, Y. Cai, Y. Ding, and Z. Huang, “Transverse-gradient undulators for a storage ring XFELO” Proc. FEL 2013, pp 740 (2013).

Gain is maximized by choosing the dispersion/gradient to balance two competing effects:
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[15] R.R. Lindberg, K.-J. Kim, Y. Cai, Y. Ding, and Z. Huang, “Transverse-gradient undulators for a storage ring XFELO” Proc. FEL 2013, pp 740 (2013).

σγ/γ = 0.15%, εr = 8.6 pm

Gain is maximized by choosing the dispersion/gradient to balance two competing effects:

A TGU enables an XFELO in an ultra-low emittance 
hard x-ray storage ring with large circumference

Decreasing the coupling and 
dispersing along y yields larger gain

From
Yuan Shen Li
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Tolerances and stability
 Requirements on longitudinal tolerances given by supermode theory
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Tolerances and stability
 Requirements on longitudinal tolerances given by supermode theory

 Requirements on transverse tolerances of optical components can be found using matrix-type 
formalism familiar to accelerator physics + requirement to preserve mode overlap
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<<   1/(crystal bandwidth)Jitter in arrival time of 
electron & photon beams

Requiring that 
ΔX < [0.1(FEL mode size) ~1 μm]

implies that ΔΦ < 20 nrad.
Requiring that

ΔΘ < [0.1(mode divergence) ~0.1 μrad] 
gives a less stringent requirement.

Note that (bunch length) < 1/(crystal bandwidth)~

Change in angle ΔΦ at, e.g., this crystal
→ change in position ΔX and angle ΔΘ 

of the x-rays at undulator center



Tolerances and stability
 Requirements on longitudinal tolerances given by supermode theory

 Requirements on transverse tolerances of optical components can be found using matrix-type 
formalism familiar to accelerator physics + requirement to preserve mode overlap

 Fluctuations on time scales much less than the cavity ring-down time (microsecond) are 
averaged over, resulting in a reduction of the gain

 Variations over a long time-scale (> ms) can be controlled with feedback

 Variations over “medium” time-scales require further study
– Subject of a current grant from DOE/BES
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 Requirements on longitudinal tolerances given by supermode theory

 Requirements on transverse tolerances of optical components can be found using matrix-type 
formalism familiar to accelerator physics + requirement to preserve mode overlap

 Fluctuations on time scales much less than the cavity ring-down time (microsecond) are 
averaged over, resulting in a reduction of the gain

 Variations over a long time-scale (> ms) can be controlled with feedback

 Variations over “medium” time-scales require further study
– Subject of a current grant from DOE/BES

 Ultimate stability should scale as the (spontaneous power in narrow BW)/(saturation power)
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XFELO proof of principle at LCLS-II
 SLAC has proposed a regenerative amplifier FEL (RAFEL)[16] at LCLS-II[17]

– RAFEL = high-gain oscillator with potentially large losses

– Route to TW pulses if combined with Q-switching (sudden release of trapped cavity 
power via, e.g., pulse heating and lattice distortion of Bragg crystal)

 We are teaming up with the RAFEL team to propose an RA/XFEL(O) experiment at LCLS

12

[16] Z. Huang and R.D. Ruth. “Fully coherent x-ray pulses from a regenerative-amplifier free-electron laser, ” PRL 96, 144801 (2006).
[17] G. Marcus, Y. Ding, J. Duris, Y. Feng, Z. Huang, J. Krzywinski, T. Maxwell, D. Ratner, T. Raubenheimer, K.-J. Kim, R. Lindberg,

Y. Shvyd’ko, D. Nguyen, “X-ray regenerative amplifier free-electron laser concepts for LCLS-II,” Proc. FEL2017, pp. 192.
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 XFELO goals are to show sufficient cavity stability to show gain in a two-bunch configuration

12

[16] Z. Huang and R.D. Ruth. “Fully coherent x-ray pulses from a regenerative-amplifier free-electron laser, ” PRL 96, 144801 (2006).
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Narrow bandwidth spontaneous emission from 
Bunch 1 to be amplified by Bunch 2

Bunch 1Bunch 2

Detector

6-7 vertically polarizing LCLS-II undulators 
from the hard x-ray line
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13Ryan Lindberg  –  Beam Dynamics for an XFELO  –  KJK-Fest  –  March 15, 2019



XFELO as the heart of an “ultimate” x-ray facility

13Ryan Lindberg  –  Beam Dynamics for an XFELO  –  KJK-Fest  –  March 15, 2019



XFELO as the heart of an “ultimate” x-ray facility

13Ryan Lindberg  –  Beam Dynamics for an XFELO  –  KJK-Fest  –  March 15, 2019

Science relying on fully 
coherent, 109 /pulse
with ultrafine (meV) 

spectral resolution at
a MHz rep rate[18]

[18] R. Röhlsberger et al. “Scientific opportunities with an x-ray free-electron laser oscillator,” to be published in J. Synch. Rad.
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[19]  L. Gupta, R. Lindberg, and K.-J. Kim. “Performance of a combined system using an XFELO and a high-gain FEL amplifier,” Proc. NAPAC16, pp 974.

TW pulses by seeding a tapered high-gain FEL[19]
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Radiator Amplifier undulators

Delay 
chicane

> 40 keV photons from HGHG[20]

Bunching at 4th harmonic 
→ 57.6 keV photons

TW pulses by seeding a tapered high-gain FEL[19]
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Modulator

Dispersive 
buncher

Radiator Amplifier undulators

Delay 
chicane

> 40 keV photons from HGHG[20]

Bunching at 4th harmonic 
→ 57.6 keV photons

TW pulses by seeding a tapered high-gain FEL[19]

Q-switching for high-
power, ultra-narrow 

bandwidth applications
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